Рециркуляционный насос (для рециркуляции воды): для котла, котельной

Рециркуляционные насосы водогрейных котлов

Рециркуляционные насосы водогрейных котлов устанавливают для повышения температуры воды на входе в котлоагрегат в целях защиты от коррозии конвективных поверхностей нагрева водогрейных котлов.

Производительность рециркуляционных насосов определяется в расчете тепловой схемы.

Практически сопротивление контура рециркуляции, включая водогрейный котел, лежит в пределах то 20 до 30 м в. ст. Количество и подача рециркуляционных насосов зависят от тепловой схемы включения оборудования (общестанционная или агрегатная). В качестве рециркуляционных наиболее часто используются насосы типа НКУ Катайского насосного завода, которые рассчитаны на перекачку воды с температурой до 200 °С при напоре от 20 до 40 м вод. ст. при подаче от 75 до 250 м 3 /час.

Расход воды на рециркуляцию для максимально-зимнего режима Gрец=180,9 т/ч.

Объемный расход воды на рециркуляцию для максимально зимнего режима:

где ρмакс.з – плотность теплоносителя при температуре для максимально зимнего режима, ρмакс.з=0,917 т/м 3 для τ1=150ºС;

По расходу воды Vрец=197,3 м 3 /ч и напору Hрец=30 м в.ст. выбираем насос НКу-140, подача насоса в диапазоне 115-200 м 3 /ч, напор 25-40 м в.ст.

Насосы сырой воды

Для подачи воды от источника водоснабжения котельной-резервуара воды, водопровода промышленного или жилого района – в систему водоподготовки котельной устанавливают насосы сырой воды. Подача этих насосов определяется максимальной потребностью в химически очищенной воде и расходом ее на собственные нужды химводоочистки. Расход воды на собственные нужды химводоочистки определяется при расчете тепловой схемы котельной.

Кроме расхода сырой воды на химводоочистку, имеются и другие расходы котельной, которые следует учитывать при определении подачи насосов сырой воды. Так, например, на охлаждение подшипников насосов, датчиков контрольно-измерительных приборов используют химически-очищенную воду, на систему гидрозолоудаления используют воду после промывки фильтров химводоочистки, конденсат из мазутного хозяйства, воду из душевых и умывальников и другую загрязненную на производстве воду.

Необходимый напор насосов сырой воды выбирается в зависимости от гидравлического сопротивления трубопроводов, арматуры, фильтров и гидростатического напора воды и обычно лежит в пределах от 40 до 60 м в.ст.

Если напор исходной воды составляет примерно 40-60 м вод. ст., то его достаточно для преодоления гидравлического сопротивления трубопроводов и аппаратуры котельной, что позволяет не устанавливать насосы сырой воды.

Из расчета тепловой схемы расход сырой воды, поступающей на химводоочистку для максимально-зимнего режима составляет Gс.в.=99,0 т/ч;

Объемный расход сырой воды для максимально зимнего режима:

где ρс.в – плотность сырой воды, ρс.в=1,0 т/м 3 при температуре холодной воды tх.в.=5 о С. Температура холодной воды в сети водопровода, в отопительный период при неизвестных данных рекомендуется принимать равной 5 ºС, в неотопительный период 15 ºС [13].

По расходу воды Vс.в.=99,0 м 3 /ч и напору Hс.в=50 м в.ст выбираем два насоса фирмы Grundfos NKG 125-80-400, один из которых является резервным (см. рисунок 2.16Рисунок ) с частотой вращения nнас=1480об/мин [11].

Библиографический список

1.Субботин, В. И. Источники теплоснабжения и их режимы работы: учебное пособие; издание 2-е дополненное ГОУВПО «ИГЭУ имени В. И. Ленина». – Иваново, 2010. -400 с

2.Эстеркин, Р. И. Котельные установки. – Л.: Энергоатомиздат. 1989. – 280 с.

3. Гавра, Т. Г., Михайлов П. М., Рис В. В.. Тепловой и гадравлический расчет теплообменных аппаратов. – М.: 2001. – 58 с.

4. Соколов, Е. Я. Теплофикация и тепловые сети: учебник для вузов/ Е. Я. Соколов 7-е издание – М.: издательство МЭИ, 2001. – 472 с.

5. СП 124.13330.2012. Тепловые сети. М.: 2012, – 59 с.

6. СП 131.13330.2012. Строительная климатология. – М.: 2012.-

7. СП 60.13330.2012. Отопление, вентиляция и кондиционирование воздуха. – М.: 2012. -64 с.

8. Водяные тепловые сети: Справочное пособие по проектированию/ под редакцией Н. К. Громова, Е.П. Шубина – М.: Энергоатом издат, 1988, – 376 с.

9. Субботин В. И., Калинин Н. В. Насосы в теплоэнергетике /ГОУВПО «ИГЭУ имени В. И. Ленина». – Иваново, 2007. – 148 с.

10. СП 89.13330.2012.Котельные установки.

11. ГОСТ 16860-88 «Деаэраторы термические»

12. КаталогGRUNDFOS. Промышленные консольные и моноблочные насосы по ISO 2858 50 Гц. -400 с.

13. Отраслевойкаталог 44-97. Новое теплообменное оборудование для промышленных энергоустановок и систем теплоснабжения. М.: ЦНИИ Тяжмаш. 1998. – 95 с.

14. ГОСТ 30494-2011. Здания жилые и общественные. Параметры микроклимата в помещениях.

15. Пособие к СНиП 23-01-99. Строительная климатология.

16. СП 41-101-95. Проектирование тепловых пунктов.

17. ГОСТ 27590-88. Подогреватели водо-водяные систем теплоснабжения.

ПРИЛОЖЕНИЯ

Приложение 1. Варианты заданий к курсовой работе

Обо- зна-че-ниеЗначение величины при максимально-зимнем режиме работы котельной (по вариантам)
Место расположения котельнойг.Ярославльг.Владимирг.Ивановог.Красноярскг.Волгоградг.Москваг.Пермьг.Иркутскг.Минскг.Калининград
Максимальные расходы теплоты (с учетом потерь и расхода на мазутное хозяйство), МВт: – на отопление жилых и общественных зданий; – на вентиляцию общест-венных зданий; – на горячее водоснабжение.Qo Qв

Приложение 2.Технические характеристики котельных агрегатов марки КВГМ

Технические характеристикиКВ-ГМ-7,56-150HКВ-ГМ-7,56-115H
Теплопроизводительность номинальная, МВт7,56
Вид топлива:газ/жидкое топливо
Рабочее давление воды,(на выходе из котла), МПа1,00,43
Температура воды на входе, °С
Температура воды на выходе, °С
Расчетное гидравлическое сопротивление, МПа, не более0,250,25
Диапазон регулирования теплопроизводительности, %30. 100
Расход воды, т/ч80,5
Расход топлива, – на газе, м 3 /ч – на легком жидком топливе, кг/ч802 692798 692
Температура уходящих газов, ° С – на газе – на легком жидком топливе>130 155118 151
КПД котла, %, – на газе – на легком жидком топливе94,0 92,794,5 92,8
Расчетное аэродинамическое сопротивление, Па – на газе м 3 /ч – на легком жидком топливе, кг/ч86,0 87,281,0 98,0
Давление газов, не более, Па
Объем топочной камеры, м 316,9
Поверхность стен топки, м 243,2
Поверхность нагрева конвективной части, м 2
Водяной объем, м 33,27
Расход воздуха, нм 3 /ч – на газе – на легком жидком топливе8070 81308030 8130
Расход газов, нм 3 /ч – на газе – на легком жидком топливе9032 87398937 8757
Расчетное (избыточное) давление воды на входе в котел, МПа1,61,6
Срок службы котла, не менее, лет

Продолжение прил.2

Технические характеристикиКВ-ГМ-11,63- -150КВ-ГМ-23,26- -150КВ-ГМ-35-150
Теплопроизводительность номинальная, МВт11,6323,26
Вид топлива:газ/мазут*
Расчетное (избыточное) давление воды на входе в котел, МПа2,5
Минимальное (абсолютное) давление воды на выходе из котла, МПа1,0
Температура воды на входе, °C
Температура воды на выходе, °C
Гидравлическое сопротивление, МПа0,25
Диапазон регулирования теплопроизводительности по отношению к номинальной, %20-100
Масса котла расчетная, кг.
Масса металла котла, кг (ГИО/дробеочистка).19000/1840026000/2510033200/32400
Расход воды, т/ч.123,5
Расход топлива, м³/ч-газ/кг/ч-мазут1220/12202580/24503870/3680
Средняя наработка на отказ, не менее
Полный назначенный срок службы котла, лет, не более20 лет или 100 000 часов
КПД котла, %, не менее, газ/мазут92,5/89,092,3/91,091,8/90,4
Удельный выброс NOx при α=1,4, кг/ГДж, не более, газ/мазут0,02/0,050,02/0,050,02/0,05
Удельный выброс CO, мг/м³ , не более, газ/мазут
Эквивалентный уровень шума в зоне обслуживания, ДБа, не более
Температура наружной (изолированной) поверхности нагрева котла, не более, °C
Суммарное аэродинамическое сопротивление, мм.вод.ст, газ/мазут44/4657/6065/67
Температура уходящих газов, °С, газ/мазут185/230190/242185/250

Продолжение прил.2

Технические характеристикиКВ-ГМ-58,2-150КВ-ГМ-116,3-150КВ-ГМ-139,6-150
Теплопроизводительность номинальная, МВт58,2116,3139,6
Вид топливагаз/мазут*
Расчетное (избыточное) давление воды на входе в котел, МПа2,5
Минимальное (абсолютное) давление воды на выходе из котла, МПа1,0
Температура воды на входе, °С, основной режим
Температура воды на входе, °С, пиковый режим
Температура воды на выходе, ° С
Гидравлическое сопротивление, МПа, не более0,250,350,35
Диапазон регулирования теплопроизводительности по отношению к номинальной, %20-100
Масса котла расчетная, кг.115 800135 000183 200
Масса трубной системы, кг.57 70093 30093 300
Расход воды, т/ч, основной
Расход воды, т/ч, пиковый режим
Расход топлива, м 3 /ч-газ/кг/ч-мазут6260/575012520/1150015063/14029
Средняя наработка на отказ, не менее
Полный назначенный срок службы котла, лет, не более20 или 100 000 часов
КПД котла, %, не менее, газ/мазут94,3/92,793,2/91,892,5
Удельный выброс NOx при α=1,4, мг/м 3 , не более, газ/мазут300/380
Эквивалентный уровень шума в зоне обслуживания, ДБа, не более
Температура наружной (изолированной) поверхности нагрева котла, °C

Продолжение прил.2

Технические характеристикиКВ-ГМ-209-150 (ПТВМ-180)
Теплопроизводительность, МВт
Топливогаз/мазут
Расчетное (избыточное) давление воды на входе в котел, МПа2,5
Минимальное (абсолютное) давление воды на выходе из котла, МПа1,0
Температура воды на входе,°С
Температура воды на выходе,°С
Диапазон регулирования теплопроизводительности по отношению к номинальной, %30-100
Гидравлическое сопротивление, МПа, не более0,25
Расход воды через котел, т/ч
Удельный расход условного топлива (расчетный), м 3 /МВт
КПД котла, брутто,% не менее, газ/мазут91/90
Удельный выброс окислов азота при α=1,4, г/м 3 , не более, газ/мазут0,23/0,34
Сейсмостойкость по СНиП II-7-91, балл, не более
Масса металла котла, кг, расчетная273 000
Средний срок службы до списания, лет, не менее

Приложение 3.Технические характеристики вакуумных деаэраторов

Наименование показателяДеаэратор ДВ-5Деаэратор ДВ-15Деаэратор ДВ-25Деаэратор ДВ-50
Номинальная производительность, т/ч
Диапазон производительности, %30. 12030. 12030. 12030. 120
Диапазон производительности, т/ч1,5. 64,5. 187,5. 3015. 60
Рабочее давление избыточное, МПа0,0075. 0,050,0075. 0,050,0075. 0,050,0075. 0,05
Температура деаэрированой воды, °С40. 8040. 8040. 8040. 80
Температура теплоносителя, °С70. 18070. 18070. 18070. 180
Тип охладителя выпараОВВ-2ОВВ-2ОВВ-2ОВВ-8
Тип эжектора* (Рвс-0,02 МПа)ЭВ-10ЭВ-10ЭВ-30ЭВ-60
Тип эжектора* (Рвс-0,006 МПа)ЭВ-30ЭВ-30ЭВ-60ЭВ-60

Продолжение прил.3

Наименование показателяДеаэратор ДВ-75Деаэратор ДВ-100Деаэратор ДВ-150Деаэратор ДВ-200
Номинальная производительность, т/ч
Диапазон производительности, %30. 12030. 12030. 12030. 120
Диапазон производительности, т/ч22,5. 9030. 12045. 18060. 240
Рабочее давление избыточное, МПа0,0075. 0,050,0075. 0,050,0075. 0,050,0075. 0,05
Температура деаэрированой воды, °С40. 8040. 8040. 8040. 80
Температура теплоносителя, °С70. 18070. 18070. 18070. 180
Тип охладителя выпараОВВ-8ОВВ-8ОВВ-16ОВВ-16
Тип эжектора* (Рвс-0,02 МПа)ЭВ-60ЭВ-60ЭВ-100ЭВ-100
Тип эжектора* (Рвс-0,006 МПа)ЭВ-100ЭВ-100ЭВ-220

Продолжение прил.3

Наименование показателяДеаэратор ДВ-400МДеаэратор ДВ-800М
Номинальная производительность, т/ч
Диапазон производительности, %30. 12030. 120
Диапазон производительности, т/ч120. 480240. 960
Рабочее давление избыточное, МПа0,0016. 0,050,0016. 0,05
Температура деаэрированой воды, °С40. 8040. 80
Температура теплоносителя, °С70. 18070. 180
Тип охладителя выпаравстроенныйвстроенный
Тип эжектора* (Рвс-0,02 МПа)ЭВ-220ЭВ-340
Тип эжектора* (Рвс-0,006 МПа)ЭВ-340
Тип эжектора пароструйногоЭП (с)-2-240ЭП (с)-2-480

*-деаэраторы ДВ-5. 200 комплектуются эжекторами водоструйными (ЭВ), деаэраторы ДВ-400М. 800М эжекторами пароструйными ЭП (с) или эжекторами водоструйными ЭВ, либо вакуумными насосами.

Назначение и оборудование рециркуляционной линии для газовых жаротрубных котлов Колви

Для жаротрубных водогрейных котлов Колви завод-изготовитель рекомендует установку рециркуляционной линии, которая будет обеспечивать постоянное поддержание температуры теплоносителя на входе в котел на уровне 55-60 градусов. Рециркуляция необходима для противодействия возможному возникновению конденсации на поверхностях котла, что особенно возможно при работе котла в режиме 50% и ниже от номинальной мощности.

Технической документацией на жаротрубные котлы не рекомендуется работа котла в режиме мощности ниже 40% от номинала, поскольку тут возникает следующее неблагоприятное явление: относительно низкая температура дымовых газов усугубляется низкими значениями температуры теплоносителя на возвратной линии, что приводит к образованию конденсата на стальных конструкциях котла с известными последствиями. Потому необходимо обеспечивать на “обратке” котла указанные выше 55-60 градусов, чего вполне достаточно для защиты от “точки росы”, которую дымовые газы могут достигнуть.

Для организации подмеса горячего теплоносителя в “обратную” линию жаротрубного котла есть 2 основных варианта:

  • Установка подмешивающего трехходового клапана.
  • Установка циркуляционного насоса (насоса рециркуляции).

На практике чаще всего используется именно 2-й вариант ― установка рециркуляционного насоса. Такой насос устанавливается на перемычке между подающей и возвратной линией, в непосредственной близости от котла. Обязательным условием является удобство доступа обслуживающего персонала котельной к насосу и прочим компонентам рециркуляционной линии.

Ниже приведем типичную схему линии рециркуляции:

На приведенной схеме указана типичная схема рециркуляции газового котла (1), расположенная перемычкой между подающей Т1 (2) и возвратной Т2 (3) линиями. Непосредственно насос рециркуляции (4) с ответными фланцами должен устанавливаться вместе с запорной арматурой (6) на входе и выходе теплоносителя для возможности демонтажа насоса при необходимости. Так же, перед и после насоса желательна установка манометров (5) для контроля давления теплоносителя и визуального определения значений перепадов напора. После напорного патрубка насоса необходима установка обратного клапана (7) для обеспечения корректности направления взаимной циркуляции воды на возвратной и рециркуляционной линиях.

Методика расчета необходимых параметров насоса рециркуляции:

Расчетными параметрами для данных насосов являются:

  • Необходимый расход теплоносителя.
  • Расчетный напор насоса, позволяющий преодолевать гидравлическое сопротивление всех элементов: котла, труб, запорной арматуры. При этом должен обеспечиваться необходимый расход теплоносителя (см. выше).

Расход теплоносителя для рециркуляционной линии определяется посредством тепловой мощности котла, расхода теплоносителя через котел и температурного режима работы котла. Расчетным значением расхода рециркуляционного насоса является 1/3 от расхода теплоносителя через котел. Ниже приведем пример расчета:

Имеется газовый жаротрубный котел Колви 250 с тепловой мощностью 291 квт. КПД котла 92%. Его температурный режим составляет 95/70 градусов.

1. Определение теплопродуктивности котла: 291х0,92=268 квт

2. Определение температурного градиента: 95-70=25 градусов.

3. Определение расхода воды через котел: (0,86х268)/25 = 9,22 м.куб. в час.

4. Определение расхода воды для рециркуляционного насоса: 9,22/3 = 3,08 м.куб. в час.

Расчетный напор насоса рециркуляции, как было приведено выше, определяется местными сопротивлениями элементов котельной. Как показывает практика, допустимыми являются параметры напора 2-4 метра вод. ст. (0,2-0,4 бар).

Схема с рециркуляцией ГВС в частном доме

При большом расстоянии от бойлера до точки забора воды может потребоваться рециркуляция ГВС. Она необходима для постоянного перемещения жидкости в контуре горячего водоснабжения.

Для чего необходима рециркуляция

Трубопровод горячего водоснабжения может иметь различную длину. Если точка забора расположена на большом расстоянии от бойлера, то при открывании крана горячая вода пойдёт не сразу. Необходимо будет подождать некоторое время, пока из трубопровода не вытечет холодная жидкость.

В частных домах расстояние от места расположения бойлера до точки забора воды может быть достаточно большим. Это делает использование системы горячего водоснабжения некомфортным и приводит к нерациональному расходованию воды.
Для поступления горячей воды в момент открывания крана необходима постоянная её циркуляция.

Рециркуляция ГВС представляет собой принудительное перемещение жидкости в контуре горячего водоснабжения с помощью насоса.

Следует учитывать, эффективность возможна только при использовании бойлера накопительного типа. Проточные водонагреватели включать в систему рециркуляции нецелесообразно.

Насос периодически перекачивает жидкость. При этом теплоноситель не выходит за пределы контура и возвращается в накопительную емкость. Это позволяет постоянно поддерживать необходимый показатель температуры жидкости в трубопроводе.

Схема рециркуляции

Изготовление контура, в котором будет постоянно поддерживаться температура воды, возможно при строительстве или глубокой модернизации системы ГВС.

Схема рециркуляции выполняется следующим образом:

  1. Прокладка трубопровода. Схема предусматривает замкнутый контур. Труба прокладывается через нужные помещения к дальней точке и обратно к бойлеру.
  2. Подключение точек забора воды. Монтаж предусматривает последовательное включение точек водозабора в систему. В дальнем месте потребления воды труба не заканчивается, а возвращается к водонагревателю.
  3. Включение в контур насоса. Он необходим для принудительной циркуляции теплоносителя. Лучше включить насос и установить запорное устройство в схему на промежутке, где вода поступает не к потребителям, а к накопительной емкости. Это позволит при необходимости отключить принудительную циркуляцию.

Правила монтажа

Чтобы выполнить монтаж рециркуляции горячего водоснабжения, необходимо наличие определенных знаний. Можно обратиться за помощью к квалифицированным специалистам.

При монтаже своими руками необходимо придерживаться нескольких правил:

  1. Правильно рассчитать объём водонагревателя. Недостаточный размер накопительной емкости приведет к попаданию в контур воды из трубопровода ХВС. При расчете объема бойлера учитывается количество людей, проживающих в доме.
  2. Использовать в обвязке водонагревателя обязательные элементы, рекомендуемые заводом изготовителем. Для безопасного использования бойлера может потребоваться монтаж определенных элементов обвязки. Часто производители поставляют такие элементы в комплекте с водонагревателем.
  3. Утеплить трубопровод. Для уменьшения теплопотерь при циркуляции теплоносителя в контуре горячего водоснабжения следует нанести на трубы слой теплоизоляции. Можно использовать полиэтиленовую теплоизоляцию для труб. Утеплению в обязательном порядке подлежат и фитинги.
  4. Использовать насос для рециркуляции ГВС. В отличие от помп, предназначенных для перемещения жидкости в системе отопления, диаметр резьбовых соединений рециркуляционных насосов предназначен для соединения с фитингами систем водоснабжения.

Отключение системы

В некоторых случаях возникает необходимость отключить принудительную циркуляцию жидкости. Это может быть связано с сезонными явлениями, отсутствием людей в доме и т.п.

Для прекращения принудительной циркуляции нужно отключить насос и перекрыть запорный кран на обратной стороне трубопровода.

Включение системы осуществляется в обратной последовательности. Существует возможность автоматизировать процесс.

Для этого можно установить насос со встроенным таймером или подключить помпу к отдельно стоящему управляющему устройству.

Таким образом можно включать циркуляцию в нужное время суток на определенный промежуток времени. Рециркуляция ГВС нужна для комфортного использования накопительного водонагревателя и экономного расходования воды.

Важным условием при монтаже является уменьшение теплопотерь путем утепления трубопровода. При необходимости система может быть автоматизирована.

Рециркуляционные насосы

Рециркуляционные насосные установки используются в водогрейных котельных и в котельных смешанного типа (с паровыми и водогрейными котлами). Их назначение в поддержании температуры воды на входе в водогрейный котел не менее допустимой с учетом используемого топлива. С той целью рециркуляционный насос часть нагретой воды в котле подает снова на вход в котел, где она перемешивается с обратной водой из тепловой сети и увеличивает ее температуру до заданной величины. Иногда на производстве важно иметь катализатор Клауса, который можно купить только в специализированном магазине.

Температура воды на входе в котел зависит от вида топлива и содержания в нем серы. При сжигании углей и мазута образуются пары серы и ее соединений, которые легко конденсируются на экранных трубах котла, где их температура не превышает 100ºС, что приводит к интенсивной эрозии поверхности труб и утонению стенки. Использование природного и других энергетических газов в качестве топлива для котлов позволяет снизить минимальную температуру поверхности экранных труб до 60-70ºС, исключая эрозию их поверхностей.

Многообразие условий покрытия круглогодичных и пиковых тепловых нагрузок на территории нашей страны стало причиной проектирования водогрейных установок со значительными отличиями в тепловой схеме, что позволило более полно и эффективно обеспечивать теплом потребителей производственного, социального и жилищного сектора.

Вторым важным назначением рециркуляционных насосов является оперативное обеспечение регулирования тепловой нагрузки в соответствии с графиком и изменениями атмосферных условий. Эффективное регулирование тепловой нагрузки возможно только при сохранении заданного уровня надежности системы. Это, от части, является причиной проектирования водогрейных установок со значительными отличиями в тепловой схеме.

Тепловая схема котельной и схема включения рециркуляционного насоса жестко связаны с температурным графиком подачи тепла потребителям в разные сезоны года и необходимостью в большей или меньшей мере производить подпитку сетевой установки.

Наиболее распространенные схемы включения рециркуляционных насосов в тепловые схемы водогрейных котельных и котельных смешанного типа приведены ниже.

Простая схемы включения рециркуляционных насосов.

Наиболее простая схема включения рециркуляционных насосов используется в тех случаях когда температура воды в подающем трубопроводе – tП более 110ºС и теплоноситель используется для покрытия нагрузок на вентиляцию и отопление рисунке 1:

Рециркуляционный насос установлен на байпасе, соединяющем подводящий и отводящий трубопроводы водогрейного котла. В напорной части байпаса перед врезкой в подводящий трубопровод установлен регулятор подачи рециркуляционного насоса. Он выполнен в виде клапана с автоматическим приводом. Управление приводом клапана связано с температурой воды в обратном трубопроводе – tОБ. При уменьшении tОБ клапан частично поднимается и увеличивает производительность рециркуляционного насоса, что приводит к повышению температуры воды на входе в котел – tВК до расчетной величины. При повышении tОБ (для уменьшения тепловой нагрузки) клапан поднимается, увеличивая проходное сечение, снижая гидравлическое сопротивление байпаса, что приводит к увеличению производительности рециркуляционного насоса и увеличению температуры воды в подающем трубопроводе котла до расчетной величины.

Достоинствами этой схемы являются ее простота и надежность.

Включение рециркуляционных насосов через подогреватели подпиточной воды.

В водогрейных котельных, расположенных в непосредственной близости от потребителей тепла, при использовании в качестве топлива природного газа, при закрытой схеме теплоснабжения получила применение схема включения рециркуляционных насосов, приведенная на рисунке 2:

Из обратного трубопровода холодная вода поступает на вход сетевого насоса. Сюда же рециркуляционный насос подает воду из водогрейного котла, которая прежде проходит одну или две ступени подогрева сырой воды. Вода из циркуляционного контура при смешивании с водой из обратного трубопровода, увеличивает ее температуру до 70ºС. С этой температурой вода поступает через сетевой насос в водогрейный котел, а из котла подается в трубопровод прямого тока для покрытия нагрузок внешних потребителей тепла.

Сырая вода, подвергаясь последовательно: подогреву, механической и химической очистке, вторичному подогреву и деаэрации, – подается в аккумулирующие баки (на рис. 2 подогреватель второй ступени и аккумулирующие баки не показаны). По мере необходимости подпиточным насосом вода из аккумулирующих баков подается в трубопровод обратной воды тепловой сети для поддержания в ней расчетного давления.

В этой схеме производительность сетевого насоса должна приниматься несколько больше, чем расход воды в трубопроводе прямого тока, так как часть воды сетевой насос подает в контур рециркуляции. Производительность рециркуляционного насоса может быть меньше, чем сетевого насоса в 5-10 раз и более.

Регулирование производительности рециркуляционного насоса осуществляется регулятором подачи, который выполнен в виде клапана с автоматическим приводом. Управление приводом клапана связано с температурой воды в обратном трубопроводе. При увеличении температуры воды в обратном трубопроводе клапан частично прикрывается и уменьшает производительность рециркуляционного насоса, что приводит к снижению температуры воды на входе в котел до расчетной величины (70ºС). При уменьшении tОБ клапан поднимается, увеличивая проходное сечение, снижая гидравлическое сопротивление байпаса, что приводит к увеличению производительности рециркуляционного насоса и увеличению температуры воды в подающем трубопроводе сетевого насоса (котла) до расчетной величины.

Регулирование тепловой нагрузки для внешних потребителей в этой схеме возможно, как за счет изменения температуры воды на входе в котел, так и за счет незначительного изменения производительности сетевого насоса.

Несомненными достоинствами этой схемы являются ее простота, высокая экономичность и надежность.

Простое включение рециркуляционных насосов с комбинированным использованием горячей воды.

В пиковых водогрейных котельных, расположенных в непосредственной близости от потребителей тепла, при использовании в качестве топлива мазутов, получила широкое применение схема включения рециркуляционных насосов, приведенная на рисунке 3:

Рециркуляционный насос, как и в схеме по рис. 3, установлен на байпасе, соединяющем подводящий и отводящий трубопроводы котла. В напорной части байпаса установлен регулятор подачи насоса, в виде клапана с автоматическим приводом.

Горячая вода с выхода котла с температурой 150ºС подается:
– на мазутное хозяйство;
– на подогрев подпиточной воды;
– на вход рециркуляционного насоса;
– в трубопровод прямого тока.

Тепловая нагрузка мазутного хозяйства изменяется как в течение суток, так и по сезонам года. Минимальные тепловые нагрузки отмечаются в летний сезон. Максимальные тепловые нагрузки мазутного хозяйства отмечаются в зимний сезон во время выгрузки мазута из цистерн в аккумулирующие баки. Зимние тепловые нагрузки мазутного хозяйства могут превышать летние нагрузки в 2-4 раза. По этой причине в северных регионах нашей страны для обеспечения теплом только мазутного хозяйства на водогрейных котельных устанавливают паровые котлы низкого давления. Это требует дополнительных площадей в котельном цехе и увеличивает капитальные затраты проекта. Увеличиваются и эксплуатационные затраты, что повышает стоимость 1Гкал отпускаемого тепла. Несомненным плюсом в этом случае является возможность увеличения тепловой нагрузки на внешнего потребителя. Охлажденная вода из теплообменников мазутного хозяйства подмешивается в трубопровод обратной воды внешних потребителей.

Тепловая нагрузка на подогрев подпиточной зависит от схемы теплоснабжения. При замкнутой схеме потери теплоносителя из-за неплотностей не должны превышать 1-2%. При разомкнутой схеме теплоснабжения потери теплоносителя в сети, а, следовательно, и отбор горячей воды из котла на подогрев подпиточной воды значительно увеличиваются. Охлажденная вода из подогревателей подпиточной воды подается в трубопровод прямого тока.

Производительность рециркуляционного насоса регулируется автоматическим клапаном с учетом температуры обратной воды из сети внешних потребителей тепловой энергии. При замкнутой схеме теплоснабжения влияние расхода греющей воды через подогреватели подпиточной воды на работу рециркуляционного насоса незначительное. Для разомкнутых схем теплоснабжения регулирование производительности рециркуляционного насоса производится в более широком диапазоне, что требует использования других приемов регулирования.

Включение рециркуляционных насосов в подводящий трубопровод котла.

Сравнительно простая схема включения рециркуляционных насосов используется и в тех случаях когда tП

Рециркуляционный насос установлен перед котлом и подает через него горячую воду в трубопровод прямого тока и в байпас. В прямом трубопроводе часть горячей воды смешивается с водой из обратного трубопровода и с температурой tП поступает потребителю. Другая часть горячей воды из котла по байпасу поступает на вход рециркуляционного насоса. Сюда же поступает часть обратной воды, которая прошла через сетевой насос с повышением давления до расчетного.

Включение рециркуляционных насосов в рассечку между сетевым подогревателем и котлом.

В пиковых водогрейных котельных, расположенных в непосредственной близости от потребителей тепла, при использовании в качестве топлива мазутов, для разомкнутой схемы теплоснабжения получила применение схема включения рециркуляционных насосов в рассечку между сетевым подогревателем и котлом рисунке 5:

Рециркуляционный насос подает воду в котел с температурой не менее 110ºС, откуда горячая вода с температурой 150ºС и более подается в мазутное хозяйство, в подогреватель подпиточной воды и на сетевой подогреватель. Холодная вода из мазутного хозяйства подается в трубопровод обратной воды, проходит сетевой подогреватель и поступает в сеть потребителям тепла. Вода из сетевого подогревателя с tП не менее 110ºС поступает на вход рециркуляционного насоса. Сырая вода предварительно перед химической очисткой подогревается до температуры 20 ºС, например, водоводяным подогревателем и водой из мазутного хозяйства. После ХВО подпиточная вода подогревается до 50-70 ºС и поступает в вакуумный деаэратор, а из него в аккумулирующие баки (на рис. 5 не показаны).

Аккумулирующие баки накапливают воду в периоды водоразбора меньше среднесуточного и отдают дополнительное количество деаэрированной воды в циркуляционный контур котла. Из этого же контура через мазутное хозяйство производится подпитка и тепловой сети. При необходимости подпитка тепловой сети может производиться насосом подпиточной воды через поперечную перемычку с клапаном перед сетевым подогревателем (на рис. 5 не показана). Установка аккумуляторных баков позволяет работать оборудованию установки горячего водоснабжения с постоянной среднесуточной нагрузкой, что является наиболее экономичным решением.

Всю аппаратуру котельной, предназначенную для подпитки тепловой сети следует рассчитывать на среднечасовой расход воды за сутки с максимальным водоразбором.

Регулирование тепловой нагрузки производится за счет изменения производительности рециркуляционного насоса. Для этого на подводящем трубопроводе установлен регулирующий клапан с автоматическим приводом. Управление клапаном производится с учетом температуры воды в обратном трубопроводе. При уменьшении температуры обратной воды клапан поднимается и увеличивает проходное сечение, что приводит к уменьшению сопротивления рециркуляционного контура, увеличению производительности рециркуляционного насоса и снижению тепловой нагрузки на сетевой подогреватель. При этом одновременно в котел подается меньше топлива и воздуха для понижения его рабочей мощности.

Система регулирования тепловой нагрузки выполняется так, что при любом изменении потребления тепла tВК остается не менее 110ºС.

Рециркуляция ГВС: для чего необходима и как правильно смонтировать

Поговорим про организацию системы ГВС с рециркуляцией. Благодаря такой схеме водоснабжения в контуре ГВС постоянно поддерживается циркуляция горячей воды.

Преимущества циркуляции ГВС и область применения

Достаточно широко распространены ситуации, когда в частных домах вся система водоподготовки объединяется в одном техническом помещении, максимально удалённом от обитаемой зоны. Также часто можно встретить проекты домов, имеющих несколько санузлов, в том числе на разных этажах. Для таких ситуаций характерна значительная протяжённость трубопроводов горячего водоснабжения, что сулит жильцам некоторые неудобства.

Например, при открытии горячей точки водоразбора требуется время, порой немалое, пока вода, проследовав по каналам и отдав им часть собственного тепла, начнёт поступать из крана при номинальной температуре. Это не только вызывает определённые неудобства при каждом использовании санузла, но также приводит к перерасходу воды, которая на многих объектах частного строительства служит стратегическим ресурсом.

Проблему решает узел рециркуляции, поддерживающий постоянный проток в системе ГВС. Благодаря этому горячая вода поступает из крана сразу после открытия, к тому же её температура может быть точно отрегулирована вне зависимости от режима работы нагревательного прибора.

Узлами рециркуляции могут быть укомплектованы те системы, в которых за нагрев воды отвечает накопительный нагреватель, бойлер косвенного нагрева или второй контур котла. При использовании проточных газовых и электрических нагревателей их гораздо разумнее переместить ближе к точкам водоразбора.

Нужно отметить, что рециркуляция ГВС подразумевает совершенно иную топологию системы. Поэтому реализация такой идеи возможна только в процессе строительства, ну или как минимум капитального ремонта. При попытках доработать имеющийся сантехнический комплекс с целью организовать рециркуляцию, вряд ли получится обойтись малой кровью.

Насосный узел и обвязка

Схема компоновки узла рециркуляции может отличаться в зависимости от используемого водогрейного и насосного оборудования. Например, конструкцией некоторых бойлеров косвенного нагрева предусмотрен третий отвод из верхней трети ёмкости для подключения возвратной трубы рециркуляции. Если такого отвода нет, обратный поток подключается через тройник к патрубку подачи холодной воды.


Пример схемы обвязки бойлера косвенного нагрева с рециркуляцией ГВС: 1 — котёл отопления; 2 — группа безопасности котла с расширительным баком; 3 — циркуляционный насос системы ГВС; 4 — группа безопасности бойлера с расширительным баком; 5 — потребители горячей воды; 6 — радиаторы отопления; 7 — бойлер косвенного нагрева; 8 — циркуляционный насос бойлера; 9 — обратные клапаны; 10 — циркуляционный насос системы отопления; 11 — сетчатый фильтр грубой очистки

Если взять в качестве примера стандартный электрический водонагреватель с двумя отводами, то на патрубке подачи холодной воды сначала устанавливается разъёмное соединение с накидной гайкой и группа безопасности для бойлеров. Ниже монтируется тройник, на два свободных отвода которого устанавливают шаровые краны. Один из них предназначен для подключения к магистрали ХВС, другой — для обратной трубы петли рециркуляции.


Схема рециркуляции ГВС с накопительным бойлером: 1 — накопительный водонагреватель; 2 — кран для подсоса воздуха при сливе бака; 3 — группа безопасности; 4 — обратные клапаны; 5 — циркуляционный насос; 6 — недельно-суточный таймер; 7 — потребители горячей воды

Таким образом, подача холодной воды в систему происходит только при снижении давления от открытия водоразбора, в остальных случаях горячая вода циркулирует по замкнутой петле, включающей весь объём бойлера.

Это главный недостаток водонагревательных приборов, конструкция которых не предусматривает их использование в системах ГВС с рециркуляцией. При такой схеме подключения бойлер не будет как положено отдавать 2/3 своего объёма с неизменно высокой температурой, ведь при подпитке весь объём жидкости будет равномерно охлаждаться.

Что касается самого насоса, для этих целей ведущими производителями сантехнического оборудования (Wilo, Grundfos) разработаны целые серии приборов. Их основное отличие от стандартных циркуляционных насосов — резьбовые патрубки для подключения такого же типоразмера, который обычно используется в бытовых системах водоснабжения — под резьбу 1/2″ или 1/4″.

В остальном такие насосы практически полностью идентичны оборудованию, которое используется в системах отопления с принудительной циркуляцией теплоносителя. Из дополнительных функций могут иметься в наличии регулировка производительности, суточно-недельный таймер и термостат.

Система трубопроводов

Один из главных недостатков систем ГВС с рециркуляцией заключён в их повышенной материалоёмкости. Помимо того что водопроводный контур состоит из двух труб, замкнутых в петлю, дополнительно требуется обеспечить теплоизоляцию каналов, дабы сдерживать в пределах нормы паразитные утечки тепла. Но обе эти проблемы решаются относительно легко.

Лучший вариант материала для обустройства системы с рециркуляцией — полиэтиленовые трубы (PEX) с надвижными пресс-фитингами. Да, монтаж таких систем требует использования специального дорогостоящего оборудования, однако вполне можно обойтись комплектом ручного инструмента для опрессовки, взятым в аренду. При этом в пересчёте на погонаж сами трубы обходятся значительно дешевле полипропиленовых и металлопластиковых, а срок их службы несопоставимо выше.

В любом случае, схема прокладки трубопровода достаточно проста. Первая её часть, подающая воду к сантехническому оборудованию, монтируется непрерывной линией от теплового узла последовательно к каждой точке водоразбора. На последней точке в цепи трубопровод не заканчивается, он возвращается обратно к тепловому узлу. Это обстоятельство нужно учитывать при рассмотрении различных схем прокладки, чтобы минимизировать расход материалов на организацию петли.

Перед прокладкой каждый отдельный сегмент трубопровода облачается в поясную теплоизоляцию из вспененного полиэтилена или каучука. Последний материал более предпочтителен для тех участков труб, которые впоследствии будут замурованы. Теплоизоляция должна размещаться вплотную к фитингам, все стыки между оболочкой нужно обязательно проклеить металлизированным скотчем.

Эксплуатация и режимы работы

Мнение, что система рециркуляции послужит причиной дополнительных энергозатрат, не лишено оснований, однако во многом преувеличено. Дело в том, что в отопительный период, когда в горячей воде есть самая насущная необходимость, паразитные теплопотери так или иначе остаются внутри теплового контура здания, а потому не могут считаться бесцельной тратой.

Летом же, когда в обогреве помещений надобности нет, рециркуляцию можно попросту отключить, обесточив насос и перекрыв кран на обратной стороне петли. Правда, для этого устройство принудительной циркуляции должно размещаться по схеме после всех точек водоразбора.

Рециркуляция ГВС может быть относительно легко автоматизирована. Даже если насос не снабжён встроенным программируемым таймером, ничто не мешает установить отдельное управляющее устройство и отключить работу системы ночью или в отсутствие хозяев. Если же жильё снабжено системой бытовой автоматизации, можно наладить работу системы рециркуляции на основе алгоритмов «Умного дома» или охранной сигнализации. опубликовано econet.ru

Если у вас возникли вопросы по этой теме, задайте их специалистам и читателям нашего проекта здесь.

Понравилась статья? Напишите свое мнение в комментариях.
Подпишитесь на наш ФБ:

Коллектор гвс с рециркуляцией

В индивидуальных системах отопления, особенно если дом имеет два и более этажей разводка может иметь достаточную протяженность. В данном случае может возникнуть неудобство длительного ожидания горячей воды. Если в доме живет небольшая семья (3 – 5 человек), то горячая вода в течение дня включается не так уж и часто. Между включениями она успевает остыть и при последующем включении некоторое время из крана льется холодная или просто теплая вода до тех пор, пока она не сольется на пути от котла до точки разбора. Таким образом, ожидание горячей воды может занять минуту, а за это время в канализацию уйдет до 12 литров воды и сгорит порядка 0.04 куба газа. На эту проблему давно обратили внимание в технически развитых странах и подсчитали, что обычная среднестатистическая семья из 4-х человек может “спустить” в сток до 14 000 литров холодной воды в год только в ожидании появления горячей. Кроме растраты воды, расходуется и энергия, что в конечном итоге отрицательно влияет и на Ваш кошелек.

Жители Европы, у которых вода стоит на много больше чем у нас, перестраивают системы ГВС, внедряя в них систему рециркуляции. Следует сразу оговориться, что система рециркуляции оправдывает себя только при длине труб ГВС более 10 метров. Сам по себе принцип рециркуляции прост и может иметь незначительные различия в зависимости от способа разводки ГВС.

При коллекторной системе разводки рециркуляция ГВС осуществляется последовательно через все коллекторы, а затем возвращается к водонагревателю. При двухтрубной разводке труба горячей воды проходит параллельно трубе холодной воды, при этом на дальнем потребителе она не заканчивается, а возвращается к водонагревателю. В стандартной системе используются отдельные обратные лини, ведущие от самой удаленной точки забора воды к водонагревателю. Обратная линия имеет подсоединение у спускного вентиля водонагревателя к тройнику или же к линии подачи холодной воды в бак. Благодаря этому горячая вода постоянно перекачивается и поступает к потребителю сразу же после открытия крана. Рециркуляционный насос устанавливается в обратную линию с дополнительным, встроенным в него устройством, которое повторяет поток. Регулировка такого устройства осуществляется благодаря таймеру или температурному датчику. Таймер на насосе включается в заранее заданное время, которое, как правило, выпадает на пиковое использование горячей воды.

Для систем отопления и водоснабжения используют одни и те же центробежные насосы. Но для системы рециркуляции ГВС частного дома нет смысла использовать насос слишком большой производительности. Должный комфорт вполне можно обеспечить и насосом с меньшими показателями. Для среднестатистического дома вполне достаточно центробежного насоса с мокрым ротором, мощностью не более 25 Вт. Его следует дополнить датчиком температуры, таймером или недельным программатором.

В автономных системах ГВС, для многоуровневых объектов разводка имеет повышенную протяженность, что влияет не только на срок подачи горячей воды, но и на перерасход водных и энергоресурсов из-за того, что их приходится сбрасывать в канализацию, пока не пойдёт из крана вода нужного качества.

Такие действия сегодня просто не допустимы, когда весь мир борется за сохранение водных ресурсов на планете. Несложные расчеты говорят о том, что семья с составом в 4-е человека в год может “слить” до 14 тыс. л воды. Эта проблема тревожит научный потенциал ЕС, поэтому там повсеместно реконструируют схемы ГВС с обвязкой бойлера косвенного нагрева с рециркуляцией (БКНсР).

По этому направлению реализуются передовые, инновационные технологии в системе горячего водоснабжения в России.

Принцип рециркуляции

Многие такие бойлеры стали оснащать специальным отводом для подключения линий рециркуляция воды ГВС, чтобы обеспечить постоянную температуру нагретой воды. Поэтому при монтаже системы прокладывают дополнительную трубу, которая обеспечивает движение среды по замкнутому кольцу с возможностью ее отбора.
Система рециркуляция ГВС имеет смысл, если длина труб будет более 10 м. Принцип ее довольно простой, с небольшими конструкционными различиями, зависящими от схемы обвязки бойлера косвенного нагрева, способа разводки для конкретных потребителей: коллекторной, двухтрубной или стандартной.

При коллекторной схеме вода проходит последовательно через коллекторы, и возвращается к исходной точке системы с бойлером косвенного нагрева. В двухтрубной — вода движется параллельно с холодной, но у конечного потребителя она не останавливается, а возвращается к исходной точке.

В стандартной схеме применяют обратную линию, от самого дальнего водозабора имеющей общую точку у спускного вентиля бойлера косвенного нагрева к тройнику или к холодной линии в ёмкости. Поэтому горячая вода циркулирует и поступает с расчетными параметрами к потребителю.

Насос рециркуляция горячей воды монтируется в обратку. Регулировка системы выполняется датчиком температуры и таймером, включающего оборудование системы, обычно, во время пиковой нагрузки горячего водоснабжения.

Косвенный нагрев — используется, когда у пользователя в схеме теплоснабжения есть вторичные энергоресурсы, например, в автономной системе теплоснабжения, запитанной от котла, в котором частично энергии идет на нагрев отопление, а другая — на БКНсР.

Греющий теплоноситель движется по внутреннему змеевику емкости, нагревая воду внешнего контура отопления. После чего холодный теплоноситель насосом направляется в котёл для повторного цикла, а вода из и бака-аккумулятора попадает в систему ГВС.

Конструкционно подключение бойлеров могут выполняться с несколькими контурами, в виде змеевиков, работающих от разных источников тепла: к котловому теплоносителю, к дымовым газам, к солнечному генератору и к электрическому ТЭНу.

Расчёт мощности и выбор оборудования

Первоначально, чтобы выбрать схему БКНсР и подобрать оборудование требуется выполнить расчет тепловой нагрузки на ГВС для конкретного потребителя. Неправильный выбранный метод подключения приведет к неэффективности системы рециркуляции ГВС или поломки основного и насосного оборудования.

Например, чтобы выполнить расчет, для семьи из 4-х человек берут нормы горячей воды по СНиП 2.04.01-85 «Внутренний водопровод и канализация зданий».

Несложные расчеты показывают, что на мытье посуды потребуется 336 л/неделю, душ- 1280 л/неделю, на мелкие действия еще 280 л/неделю, итого 2856 л/неделю или 17л/час.

Формула для определения мощности:

17х0.0375=0.637кВт

Расчетные параметры нагревателя:

  1. Минимальный объем водопотребления 1.5 л/мин.
  2. Объём емкости — более 100 л.
  3. Время нагрева воды до 2-х часов.
  4. Материал теплоизоляции пенополиуретан либо минвата.
  5. Элементы защиты: клапаны, датчики температуры и давления и предохранители.
  6. Срок службы — от 10 до 12 лет.

Бойлер косвенного нагрева Drazice

В торговой сети имеются надежные, проверенные практикой, бойлеры косвенного нагрева Drazice с объёмами от 80 до 200 л без ТЭНов. Корпус нагревателя подключают к внешнему источнику тепловой энергии с максимальными параметрами 110 C и 10 Бар. Теплопередача происходит через спиральный теплообменник с развитой поверхностью нагрева.

Бойлер комплектуется регулятором выходящей температуры, термостатом для управления трёхходовым вентилем или насосом циркуляции.


В нижней части предусмотрен люк, закрепленный на фланце для проведения работ по ремонту и обслуживанию, например, во время очистки бака от мусора и накипи.

Преимущества косвенных бойлеров Drazice:

  • долговечность, бак изнутри покрыт эмалью без никеля и магниевым анодом для антикоррозионной защиты;
  • наличие дополнительного фланца для размещения змеевика серии R;
  • энергоэффективность класса «В»;
  • защита от гальванического эффекта и электрохимической коррозии;
  • автоматика управления для безопасной эксплуатации.

Схема обвязки бойлера косвенного нагрева с рециркуляцией

Принцип подключения водонагревателя косвенного нагрева не отличается от обычного бойлера.

Стандартное устройство выглядят так как большие баки и состоят из следующих элементов:

  • цилиндрический бак – горизонтальный или вертикальный;
  • изоляционное покрытие для сохранения температуры;
  • датчики температуры и давления;
  • змеевик — теплообменник;
  • антикоррозионная защита.

Самое сложное оборудование — это змеевики, которые выполняют из стали или латуни. Они изготавливаются сложной конфигурацией поближе к днищу бака для равномерного нагрева среды. которая поступает в змеевик емкости.
Обвязка БКНсР производится согласно чертежам с учетом индивидуальных характеристик схемы теплоснабжения.

Для создания контура ГВС через бойлер используют 3 стандартные схемы монтажа:

  1. Включение в схему трехходового клапана.
  2. Размещение циркуляционного насоса с несколькими режимами работы.
  3. Обвязка через гидравлическую стрелку.

Трехходовые клапаны применяются с баками повышенного объема, а схема рассчитывается по принципу двухконтурного отопления. Схема с трёхходовым клапаном предусматривает установку 2-х циркуляционных насосов для распределения поступающей среды по потокам на отопление и ГВС и комплектуются термостатами и автоматическими переключателями сред.

Гидравлические стрелки используют на объектах, имеющих больше 2 контуров, например, радиаторы, тёплые полы или ГВС. Можно рециркуляцию воды выполнить по упрощенной схеме подключения бойлера косвенного нагрева, используя полотенцесушитель, для этого его устанавливают в разрыв закольцованного циркуляционного контура с насосом. Он создает напор движения среды по замкнутому контуру, БКНсР в этом случае имеет 3 врезки, 2- для ГВС и одну для подпитки системы.

Если водонагреватель имеет безнасосную схему циркуляции, рециркуляцию выполняют с помощью трехходового термостатического смесителя: ГВС, подогреваясь, циркулирует по замкнутому контуру, по мере расхода, подпитывается холодной водой.

Советы по монтажу

Считается, что легче выполнить обвязку, когда БКНсР монтируется одновременно с котлом и другим дополнительным оборудованием ГВС, поскольку врезать его в действующую схему сложнее из-за габаритов и недостаточности свободных площадей котельного зала.

Основные правила установки:

  • рационализация площадки размещения, поближе к источнику;
  • обустройство снования для бака;
  • установка мембранного гидроаккумулятора на выходе ГВС воды в бойлере, с объемом не менее 1/10 БКНсР;
  • обеспечение автономности каждого контура нагрева, через использование шарового крана;
  • обеспечение защиты от противотока, через установку обратного клапана;
  • обеспечение качества воды фильтрацией.

Требования безопасности при установке:

  1. Запрещено закреплять тяжелое оборудование на гипсокартонных или тонких перегородках. Кронштейны должны быть закреплены анкерами или дюбелями.
  2. Не зависимо от вида установки, монтаж производят выше уровня котла, или на его уровне.
  3. Напольный тип размещают на прочном основании высотой до 1 м.
  4. При установке, патрубки должны быть направлены к котлу.

Главная задача с которой успешно справляется БКНсР — повышение качества услуги ГВС в энергоэффективном режиме. Фактически, система ГВС с бойлером косвенного нагрева совместила в себе лучшие качества накопительных и проточных агрегатов.

Автор: Нильс · Октябрь 15, 2016

В этой статье будет описана довольно простая технология решения распространенной проблемы — рециркуляция гвс, вернее, отсутствие горячей воды, когда вам это нужно. Если вы живете в компактном доме и водонагреватель расположен рядом с точками потребления воды, вам такое неудобство не знакомо. Если вы живете в большом доме, а бойлер находится в подвале, до последнего потребителя может протянуться 15 и более метров водопровода. Владельцы домов большой площади знакомы с долгим ожиданием: открывают кран и ждут целых две минуты, пока потечет горячая вода. На это тратятся впустую энергетические и водные ресурсы.

Как правило, используется последовательное подключение водопровода. Основная труба тянется от нагревателя до самой дальней точки. От нее с помощью тройников подключаются потребители — раковина, ванна. Недостатки очевидны — падает давление, если одновременно открыты несколько кранов, ожидание горячей воды. Другой вариант: сбалансированная система с использованием коллектора, где каждая конечная точка обслуживается от выделенной линии от коллектора. Цена в разы выше, чем в первом случае.

Сколько уходит горячей воды впустую?

В связи с названной проблемой около 20% от общего объема потребляемой горячей воды в домах, где проживает одна семья, тратится впустую. Стоимость энергии, необходимой для нагрева, колеблется от 2000 до 12000 рублей на одну семью в год. Нижний предел диапазона относится к семьям, которые не используют много горячей воды и получают ее с помощью нагревателя, работающего на природном газе. Верхний относится к семьям, которым требуется много горячей воды и получают ее от электронагревателя.

Решение

Самым оптимальным решением станет установка насоса для рециркуляции горячей воды. Продуманная система рециркуляции гвс будет экономить энергию, воду и сделать вашу жизнь немного удобнее. Каждая система рециркуляции гвс может иметь несколько вариантных особенностей, но принцип одинаков.

Существуют различные насосы, они могут работать постоянно 24/7 или по таймеру — устанавливается определенное время включения и выключения. Насос может включаться от термостата, когда температура воды в трубе остывает ниже определенной уровня. Также может запускаться нажатием кнопки, если вы собираетесь использовать горячую воду в ближайшее время (возможно сделать отдельные выключатели в каждой ванной комнате). Или датчиком движения, который включает насос, когда люди находятся в ванной комнате.

Рециркуляция ГВС при наличии обратного трубопровода

Система рециркуляции гвс, как правило, включает в себя специальный обратный трубопровод, который позволяет воде циркулировать по замкнутому кругу. Но даже в таком случае получить горячую воду сразу после открытия крана невозможно. Чтобы вода из труб попала обратно в бойлер, нужно создать давление или движение. Как раз для этого нужна помпа, которая станет толкать воду. Циркуляционный насос устанавливается на обратке непосредственно перед бойлером.

Рециркуляция ГВС без обратки

Да, такое возможно. Для этого циркуляционный насос монтируется в самой последней точке, например, под раковиной. Холодный трубопровод используется в качестве временной возвратной линии. Холодная и горячая линии соединяются через насос.

Другой вариант — это монтаж клапана с термостатом под раковиной, а насоса на выходе от водонагревателя. Когда температура падает, термостат открывает клапан, вода возвращается обратно в бойлер. При этом насос лучше установить на определенное время работы.

Такой вариант рециркуляции гвс проще для модернизаций, так как не нужно добавлять трубу.

Эффективное проектирование

Если вы заняты строительством нового дома или переделываете старый, старайтесь соблюдать следующие принципы.

Ссылка на основную публикацию