Струйный насос: принцип работы, конструкция

Как работает струйный насос, схема его работы

Cтруйный насос – простейший аппарат, использующий для работы динамику потока жидкости. Является одним из видов нагнетателей. Простой, потому что в своей конструкции не имеет составных частей, которые движутся и трутся во время работы. Поэтому устройство данного типа обладает высокой стойкостью и длительностью эксплуатации.

Впервые струйный насос был применен еще в 19 веке в качестве лабораторного средства для выкачивания воды и избыточного воздуха из пробирочных колб. Немного позже данное устройство нашло применение в шахтах горнодобывающей промышленности для откачки воды.


Рисунок 1 – Струйный насос

На сегодняшнем этапе развития насосного оборудования, струйных насосов существует несколько модификаций:

  • элеваторы – используются в внутридомовых смесительных системах отопления
  • инжекторы – используются в энергетическом теплофикационном оборудовании;
  • эжекторы – только для сред в жидкой фазе.

Принцип работы струйного насоса

Принцип работы струйного насоса организован на передвижении среды различного агрегатного состояния по трубопроводу с вмонтированным в него соплом, которое конструктивно выполнено суженным. Благодаря сужению движение жидкости, а именно ее скорости, повышается. При этом энергия движения потока превращается в кинетическую энергию.

Всасывание жидкой среды происходит из патрубка, который в свою очередь соединяется с пространством усреднительно-смесительной камеры. После этого жидкие фазы соединяются и перемешиваются, и далее смесь движется по диффузору к потребителю. В этом случае уже производится обратное превращение энергии.

Другими словами, струйный насос не относится к нагнетательным устройствам в повседневном понятии, потому что он не обеспечивает избыточный напор на стороне нагнетательного патрубка. В струйном насосе, как описано выше, выполняется двойное превращение энергии гидравлики потока.

Как работает струйный насос

Рабочая жидкость под высоким давлением доставляется к сужающемуся соплу. Струя, которая вытекает из устья сопла, уменьшает давление в камере смесительной ниже атмосферного. Вследствие этого второй поток инжектируемой жидкости смешивается со струей и далее смесь движется в рабочую камеру.

В камере смешения инжектируемая полностью перемешивается с рабочей жидкостью, и выравниваются их давления и скорости. Хорошо перемешанный поток жидкости поступает далее в выходной диффузор.

В диффузоре происходит снижение кинетики смеси и возрастание потенциальной энергии потока. После прохождения диффузора потенциальная энергия поток смеси достаточна для поступления к потребителю (как правило – это резервуар сбора жидкости).

Схема работы струйного устройства


Рисунок 2 – Принципиальная схема функционирования струйного насоса

1- трубопровод подвода рабочей жидкости; 2 – сопло насоса; 3 – трубопровод подвода инжектируемой жидкости (пространство вокруг сопла называется камерой подвода или приемной); 4 – камера смешивания потоков; 5 – выходной диффузор.

Основным, описывающим техническую сторону струйного насосного утройства, составляет коэффициент «эжекции» (в разных источниках этот же коэффициент называют «подсосом»). Данный коэффициент определяется отношением подачи рабочего объема жидкости к объему перекачиваемого смешанного потока.

Данного типа насосы обладают относительно маленьким КПД, однако в отдельных случаях они просто бесценны. К примеру, перекачивание химических газов или жидкостей, где использование центробежных лопастных нагнетателей просто невозможно (струйный насос дозатор изображенный на рисунке 3).


Рисунок 3 – Струйный насос дозатор для химических веществ

Очень часто принципиальные схемы включения струйных насосов компонуются в последовательное соединение нескольких агрегатов. В этом случае насосы конструируются с разными диаметрами сопла, что позволяет регулировать характеристику нагнетаемого потока в рабочем диапазоне включенных последовательно агрегатов.

Устройство струйного насоса

Как уже было сказано, струйный насос не содержит в себе вращающихся частей в конструкции. Все элементы и узлы насоса предназначены для обеспечения работы рабочего и инжектируемого потоков.

Конструктивно струйный насос состоит из 4 элементов:

  • всасывающая камера;
  • сопло агрегата;
  • смесительная камера;
  • выходной диффузор;
  • насадки для подачи инжектируемой и рабочей жидкостей.

Различные модели данного типа насосов могут комплектоваться разными по характеристикам суживающимися насадками – соплами, в зависимости от вида перекачиваемой среды и ее гидравлических особенностей.

Преимущества (достоинства) и недостатки струйных насосов

К основным достоинствам струйных насосов относятся:

  • высокая надежность, долговечность и длительность эксплуатации;
  • нет необходимости осуществлять регулярное техническое обслуживание;
  • очень малая чувствительность к химически агрессивным потокам;
  • простота конструкции и монтажа;
  • широкая область применения.

Конечно, большинство перечисленных преимуществ данного типа насосов перед другими исходит из тог, что в них отсутствуют движущиеся составные элементы. Струйные насосы выделяются относительно небольшими габаритными размерами и массой. Они малотребовательны к расходам на эксплуатацию, что является очень весомым фактором их применения.

К недостаткам можно отнести:

  • достаточно мал КПД насоса, который не выше 30%;
  • необходимо подавать достаточно большие объемы жидкости на сопло.

С помощью струйных агрегатных устройств сжимают газообразные вещества, создают давление ниже атмосферного – вакуум, перекачивают жидкие среды, транспортируют твердые сыпучие вещества, смешивают различного рода газы и жидкости.

Применение струйных насосов

Достаточно широкого применения струйные насосные устройства нашли в пожарной технике, в качестве смесителей, для получения пены для тушения пожаров.

В энергетических паротурбинных установках струйные аппараты являются неотъемлемой частью конструкции для удаления пара из уплотнений вала турбоагрегата.

В химической индустрии данные насосы служат для перекачкия кислотных и щелочных растворов.

В бытовом обиходе струйный насос часто используется в водяных скважинах, а также для перекачивания канализационных стоков с песком и илом.


Струйные насосы: устройство и принцип работы.

Содержание

Первое применение струйного насоса датировано ещё XIX веком. В то время такое оборудование использовалось в лабораториях для откачивания воды и воздуха из колб. Потом струйные насосы применялись в горнодобывающей промышленности для откачивания воды из шахт.

Современные модификации струйных насосов делятся на три категории

Эжектор – применяется для перекачивания жидкости. Механизм работы заключается в отсасывании жидких веществ.

Инжектор – работает по принципу нагнетания жидких веществ. Рабочее вещество – пар.

Элеватор – используется для понижения температуры теплоносителя за счет смешивания с рабочей жидкостью.

Принцип работы струйного насоса

Принцип работы струйного насоса основан на перемещении среды различного агрегатного состояния по трубопроводу с вмонтированным в него соплом. Такое сопло изготавливается суженным. Благодаря сужению скорость жидкости при движении увеличивается.

Схема работы струйного насоса выглядит следующим образом.

Поток жидкости проходит через сопло 1. Сечение сопла по длине уменьшается, поэтому постепенно увеличивается скорость потока. Кинетическая энергия потока при этом возрастает, достигая наивысшего значения на выходе его из сопла в камеру 2.

Повышение кинетической энергии обуславливает понижение давления в камере 2. Под влиянием разности атмосферного давления и давления в камере 2 жидкость поднимается от уровня 3 в камеру 2, где она захватывается струёй рабочей жидкости, вытекающей с большой скоростью из сопла 1.

Смесь рабочей и перемещаемой жидкостей поступает в расширяющийся патрубок 4 и далее по трубопроводу в бак на высоту Нг.

Объективно, струйный насос сложно отнести к нагнетательным устройствам в классическом понимании, так как он не обеспечивает избыточный напор на стороне нагнетания потока. Цилиндрический насадок как струйный насос в практике не используется, что объясняется большими потерями энергии в нем. Конструктивная схема струйного компрессора, применяемого в промышленности выглядит следующим образом

Рабочая жидкость вытекает с высокой скоростью через сопло 1 в приемную камеру 2. Струя рабочей жидкости в приемной камере соприкасается с перемещаемой жидкостью, поступающей по трубе 3. Благодаря трению и импульсному обмену на поверхности струи в приемной камере происходит захватывание и перемещение жидкости, поступающей по трубе 3 в камеру смешения 4 и далее в конический диффузор 5.

В камере смешения происходит обмен импульсами между рабочей и перемещаемой жидкостями. В диффузоре протекает процесс превращения кинетической энергии в потенциальную. Из диффузора жидкость поступает в напорный трубопровод.

В промышленности распространены два типа струйных аппаратов: водоструйные и пароструйные компрессоры. В водоструйных насосах рабочей жидкостью является вода, а в пароструйных – пар. Способ работы водоструйных насосов и пароструйных компрессоров по существу одинаков; в рабочем процессе их имеется различие вследствие разницы в свойствах рабочих жидкостей.

Основными параметрами струйного насоса являются расход рабочей жидкости Gр, расход перемещаемой насосом жидкости Gн (подача насоса), давление рабочей жидкости Рр, давление перемещаемой жидкости Рн перед насосом и давление смешанной жидкости за насосом Рс.

Коэффициент полезного действия струйных насосов низок, но простота конструкции их и отсутствие движущихся частей привели к их широкому применению.

Очень часто принципиальные схемы включения струйных насосов компонуются в последовательное соединение нескольких агрегатов. В таком случае насосы конструируются с разными диаметрами сопла, что позволяет регулировать характеристику нагнетаемого потока в рабочем диапазоне включенных последовательно агрегатов.

Устройство струйного насоса

Конструкция струйного насоса не включает в себя движущихся частей. В зависимости от назначения в его состав входит:
сопло агрегата;
камера приема;
камера смешения;
выходной диффузор;
насадки для подачи инжектируемой и рабочей жидкостей(двухфазного потока).

Разнообразные модели агрегатов данного типа в зависимости от области своего применения оборудуются разными по характеристикам суживающимися насадками – соплами. Выбор сопла в каждом конкретном случае зависит от вида перекачиваемой среды и ее гидравлических особенностей.

Преимущества и недостатки струйных насосов

Как и у каждого оборудования у струйных насосов есть свои преимущества и свои недостатки. Попробуем обобщить основные критерии по каждой из категорий.

К основным достоинствам струйных насосов относятся:
высокая надежность и возможность продолжительной эксплуатации без ремонта;
отсутствует необходимость осуществлять регулярное техническое обслуживание;
низкая чувствительность к химически агрессивным потокам;
простота конструкции и простота монтажа;
обширная область использования (в быту и промышленности).

Конечно, большинство перечисленных преимуществ данного типа насосов перед другими исходит из тог, что в них отсутствуют движущиеся составные элементы. Струйные насосы выделяются относительно небольшими габаритными размерами и массой. Они малотребовательны к расходам на эксплуатацию, что является очень весомым фактором их применения.

Основными недостатками этого типа агрегатов являются:
очень низкий коэффициент полезного действия насоса – не более 30%;
необходимость подавать большие объемы жидкости на сопло.

С помощью струйных устройств сжимают газообразные вещества, создают давление ниже атмосферного – вакуум, перекачивают жидкие среды, транспортируют твердые сыпучие вещества, смешивают различного рода газы и жидкости.

Видеоматериалы

Достаточно широкого применения струйные насосные устройства нашли в пожарной технике, в качестве смесителей, для получения пены для тушения пожаров.

В энергетических паротурбинных установках струйные аппараты являются неотъемлемой частью конструкции для удаления пара из уплотнений вала турбоагрегата.

В химической индустрии данные насосы служат для перекачки кислотных и щелочных растворов.

В бытовом обиходе струйный насос часто используется в водяных скважинах, а также для перекачивания канализационных стоков с песком и илом.

Струйные насосы: устройство, применение, принцип работы. Водоструйный насос

Механизмы откачки и подачи воды в насосах наиболее ярко выражаются на примере перекачивающих систем. Данный принцип предполагает нагнетание жидкости, которую насос может использовать для последующего распыления. Собственно, по этой схеме и работают струйные насосы жидкостного типа. Они могут быть представлены и в виде обычного пульверизатора, и как инженерная конструкция, обслуживающая крупные гидрологические станции.

Конструкции водоструйных агрегатов

Систему подачи воды в водоструйных насосах можно характеризовать как оптимизированную. Это видно хотя бы по исполнению типовой конструкции такого агрегата. Она формируется пусковым клапаном, рабочим соплом, патрубком, направляющими гайками и защитными приспособлениями, которые страхуют весь корпус от разрыва под высоким давлением. В зависимости от модификации может меняться количество отдельных элементов, а также их устройство. Многое будет определяться эксплуатационными возможностями струйного насоса. Характеристика рабочего потенциала среднего агрегата такого типа выражается способностью к подъему воды на 50 м с производительностью в 3000 л/ч. С такими параметрами работают модели высокого бытового класса или начального уровня профессионального звена. К слову, бытовые модели нередко обеспечиваются и целым комплексом фильтрующих приспособлений в виде мембран, которые выполняют очищающую функцию при заборе воды.

Принцип работы

Практически все водоструйные агрегаты работают на принципе кинетической энергии, которая формируется в процессе выхода воды из суженного сопла. В ходе эксплуатации такие системы обеспечивают так называемое сухое всасывание, при котором создается глубокий вакуум. Важно отметить и фактор давления, без которого невозможна эксплуатация струйного насоса. Принцип работы в контексте воздействия давления определяется разными условиями прохождения жидкости на узких и широких участках трубы. Когда жидкость переходит из зауженного отрезка трубы к широкому – давление повышается, и наоборот. В некотором роде при таких перемещениях создается эффект пружины, выталкивающий воду в рабочем контуре.

Зависимость давления в трубе от скорости объясняет закон Бернулли. Согласно его формулировке, струйные насосы черпают энергию от искусственного сужения труб в соплах и на отдельных технических участках, что позволяет корректировать и давление в рабочей среде, и показатели скорости течения.

Разновидности

Энергию насоса можно использовать и для нагнетания, и для всасывания жидкостей. В связи с этим выделяют инжекторные и эжекторные агрегаты. В первом случае в обязательном порядке задействуется направляющий патрубок, который подсоединяется к целевому устройству приема – то есть резервуару, где обирается вода. Основная задача инжекторов заключается именно в наборе жидкости, хотя после выполнения этой функции также образуется и вакуум. По этому принципу работают струйные пожарные насосы, в состав которых входит камера приема, сопло с горловиной, диффузор и основной трубопровод. Главная задача в организации процесса пожаротушения водоструйным агрегатом будет заключаться в правильной настройке параметров выпуска жидкости под давлением. Что же касается эжекторных насосов, то они, наоборот, ориентируются на формирование вакуума. То есть характеристики, с которыми будет осуществляться отдача выбираемой жидкости, в данном случае не так важны, хотя они будут напрямую зависеть от параметров высасывания из конкретной среды.

Сферы применения

Водоструйные модели насосов отличаются гибкостью в эксплуатации. И хотя целевым направлением их использования считаются суда, реальная практика применения охватывает гораздо более широкий диапазон областей. Например, их задействуют в пищевой промышленности, где важна не только способность агрегатов перекачивать воду, но и смешивать ее с разными средами. Распространено и применение струйного насоса в составе канализационных линий. В данном случае применяют специальные станции, которые выполняют откачку воды из пескоуловителей. Это тот случай, когда и промышленные станции дополняются фильтрующими мембранами.

Но не только с водой работают струйные аппараты. В зависимости от характеристик жидкостной среды, их можно использовать и в работе с вязкими составами, например. В частности, струйный насос для добычи нефти позволяет осуществлять забор на скважинах глубиной более 1000 м. Другое дело, что подобная транспортировка невозможна без дополнения водойструйного оборудования вспомогательными станциями перекачки.

Преимущества насосов

В первую очередь сам принцип инжекторного и эжекторного перемещения жидкости является оптимальным для обслуживания самых разных объектов. Он предусматривает использование компактного оборудования, требующего также подключения малогабаритной инфраструктуры. То есть водойструйными станциями можно оснащать и малые, и крупные предприятия без риска значительного сокращения полезной площади. Также поскольку водоструйный насос не имеет в конструкции вращающихся и трущихся деталей, отмечается и его физическая надежность. Агрегат может долгое время эксплуатироваться под большими нагрузками, не требуя специального обслуживания. Сокращение ресурса может иметь место только при работе с агрессивными средами, но производители на этот случай обеспечивают конструкцию специальными защитными материалами.

Недостатки

Как и все упрощенные конструкции, водоструйные станции не способны обеспечивать высокую производительность, поэтому их КПД в лучшем случае достигает 70 %. Кроме того, они требуют постоянного подключения силовых мощностей для первичной подачи жидкости к соплу. Другим недостатком, которым отличаются струйные насосы, является их низкая автономность. Сам принцип работы предполагает зависимость от условий среды, которые должны создаваться сторонними ресурсами – и это еще один пункт в расходах на поддержание функции данного оборудования.

Особенности эксплуатации

Интегрировать насос в рабочую инфраструктуру можно только после того, как был произведен анализ совместимости агрегата с обслуживаемой жидкостью. Что касается рабочих мероприятий, то в перечень задач рабочего персонала будет входить поддержание достаточного объема жидкости в канале насоса и обеспечение надлежащего уровня безопасности. Обычно струйные насосы оснащаются широким перечнем измерительных датчиков и приборов, которые показывают уровень давления, скорость перемещения рабочей среды, температуру и т. д. Пользователь должен отслеживать эти значения, сопоставляя их с рекомендованными. Остановка агрегата начинается с закрытия клапана. Далее производится форвакуумная перекачка оставшейся жидкости и физическое отсоединение конструкции.

Заключение

Струйные станции перекачки имеют множество разновидностей. В данном случае рассматривался пример агрегатов, которые работают с жидкостными средами. Но существуют и целые группы модификаций, ориентированных на обслуживание паровых и газовых смесей. Особенно эжекторный водоструйный насос эффективен в работе с паром, позволяя детально настраивать конструкцию под конкретные задачи. Реже встречаются комбинированные модели таких насосов. Связано это с тем, что поверхности материала того же сопла изначально разрабатываются под свойства обслуживаемой среды. Поэтому даже в отдельных категориях моделей, предназначенных специально для жидкостных или газовых сред, сложно найти универсальные конструкции. Исключение составят разве что насосы, работающие с водой и близкими по характеристикам средами. В остальных случаях агрегаты с дополнительной фурнитурой подбираются целенаправленно под свойства конкретной жидкости, пара или газа. И это не говоря об учете характеристик циркуляции носителя в обслуживаемой инфраструктуре.

Принцип работы и области применения струйных насосов

Струйные насосы являются самыми простыми по принципу действия и конструкции среди напорной техники. Такой агрегат является динамичным, то есть не имеющим в своем составе двигающихся частей. Это плюс такого устройства, поскольку предотвращает его изнашивание.

Первый струйный насос был использован в конце XIX века как инструмент для отсасывания воздуха и воды из пробирок. Затем его стали применять для откачивания воды из шахт. В СССР такие насосы начали широко использоваться только в середине прошлого века.

1 Принцип работы

Конструкция струйного насоса достаточно проста и практически не требует технического обслуживания. При работающем насосе вода, пар или газ движутся по трубе с сужающимся соплом. Благодаря такой конструкции сопла скорость движущейся массы возрастает.

Маленький струйный насос

Внутри подводящей камеры давление воды снижается и становится ниже атмосферного, в результате чего в камере создается вакуум.

Всасывание происходит из трубопровода, соединенного с камерой. В процессе работы рабочая жидкость смешивается с перекачиваемой жидкостью. Затем эта масса попадает в диффузор, а потом в резервуар.

Таким образом, в работе струйного насоса используется принцип нагнетания.
к меню ↑

1.1 Принцип работы (видео)

2 разновидности

В зависимости от типа перекачиваемой и рабочей жидкости, различают три типа струйных насосов. К ним относятся:

  1. Эжектор. Этой вид струйных насосов применяется только для перекачивания жидкости. Механизм работы заключается в отсасывании жидких веществ. Рабочая жидкость – вода.
  2. Инжектор. Работает по принципу нагнетания жидких веществ. Рабочее вещество – пар.
  3. Элеватор. Используется для понижения температуры теплоносителя за счет смешивания с рабочей жидкостью.

В общем, струйные насосы могут перекачивать жидкость, газ и пар. Могут применяться как жидкоструйные агрегаты (для смешивания и транспортировки рабочей и пассивной жидкости с разницей давления) и аэрлифтовые/эрлифтовые (выполняет функцию подъема жидкостей).

Если насос используется только для перекачки воды, его называют водоструйным. Он может иметь две модификации: вакуумный насос (работающий для использования в лабораториях) и гидроэлеватор (используется для скважин с глубиной до 16 метров).
к меню ↑

2.1 Области использования

Насосы струйные широко применяются в разных сферах промышленности. Причем они могут использоваться как самостоятельные установки или вместе с другими насосными установками. Благодаря простоте конструкции и высокой надежности такие агрегаты незаменимы в работе на реакторах, в аварийных ситуациях с отключением воды, при пожаротушении.

Струйный насос дозатор

Такие конструкции часто применяются в сферах, где работа лопастных насосов не может быть эффективной (например, при перекачивании химически агрессивных веществ), или в системе с лопастными насосами для повышения эффективности их работы.

Кроме этого, эти насосы используются в системах кондиционирования, канализации, для водоотлива и водопонижения.

Одним из важнейших показателей для этой техники является коэффициент подсоса. Эта величина являет собой соотношение расхода рабочей жидкости и перекачиваемого вещества.

Несмотря на простоту конструкции и низкий КПД этот тип механизмов часто применяется в случаях, когда невозможно использовать никакой другой тип насосов. Они легко устанавливаются в трубопроводную систему. Часто выпускаются с изменяемым соплом.

Особенности струйных насосов:

  • высокая надежность;
  • отсутствие необходимости в регулярном техобслуживании;
  • широкая сфера применения;
  • простая конструкция.
  • низкий уровень КПД (не более 30%).

2.2 модель для цемента

Данная техника широко применяется для транспортировки цемента. При воздействии сжатого воздуха сыпучие материалы транспортируются из бункеров в машины для перевозки.

Струйный насос для цемента

Механизм действия здесь такой: под большим давлением воздуха частицы цемента рассыпаются настолько, что становятся летучими. В результате воздушные потоки могут перемещать их в заданном направлении.

Следует отметить, что процесс такой перекачки цемента проходит под большим давлением, поэтому расстояние подачи этого материала ограничено в пространстве. Например, максимальное расстояние, на которое механизм подает цемент по вертикальной оси – не более 50 метров. По горизонтальной оси это расстояние не может превышать 400 метров.

Для транспортировки цемента, а также других сыпучих материалов можно использовать струйный насос CH 2 с интенсифицирующей камерой. Для перемещения масс по трубопроводам используется сжатый воздух.

Технические характеристики CH 2:

  • производительность: 25 т/ч;
  • масса – 200 кг.
  • подъем в высоту: 25м;
  • протяженность подачи по горизонтали: 150м;
  • давление сжатого воздуха: 0,2-0,3 МПа;
  • расход сжатого воздуха: 3 м³ /мин.

2.3 Бытовые модели

Данные агрегаты, особенно используемые в быту, имеют невысокие производственные характеристики. Установленный в домашней скважине насос перекачивает только 15-17 литров в секунду. Более профессиональный (и соответственно дорогой) аппарат может перекачать 30-50 литров за секунду.

Бытовой струйный насос

Высота подъема воды бытовым струйным насосом колеблется в пределах 15 метров. Некоторые аппараты могут поднять жидкость на 20 метров, но при этом КПД будет соответственно снижаться. Более мощное и профессиональное оборудование может поднять воду из глубины 50 м.
к меню ↑

2.4 для нефтяной промышленности

Струйный насос для добычи нефти состоит из таких частей: канал для подведения рабочей жидкости, активное сопло, канал подвода инжектируемой жидкости, камера смещения и диффузор.

В данной сфере промышленности такие агрегаты ценятся за простоту устройства, высокую надежность и функционирование даже в экстремальных условиях, таких как высокая концентрация свободных газов или механических соединений в добываемой массе.

Струйные насосы обеспечивают эффективное применение свободных газов, быстрый приток нефти, свободную регуляцию забойного давления, быстрое остывание погружных электродвигателей и др.
к меню ↑

3 Расчет параметров

Эта процедура являет собой поиск оптимальных параметров, при которых коэффициент полезного действия будет иметь максимальное значение. При этом нужно учесть такие параметры как форма сопла, входной участок пассивного потока, представляющий собой поток, который подсасывается к основному, длина смесительного отсека, расстояние между отсеком и соплом, угол раскрытия и расширения диффузора.

Принцип работы струйного аппарата

Расчеты проводятся по формуле:

  • Q3 – подача в камеру диффузора;
  • Q1 – расходное количество рабочей жидкости;
  • Q2 – расходное количество вещества для эжектирования.

Для того, чтобы рассчитать кoличество жидкости для эжектирования, нужно кoличество литров в секунду жидкости для эжектирования разделить на количество литров в секунду рабочей жидкости.

Также при расчетах стоит учитывать вид насосов и область применения, поскольку они могут иметь дополнительные параметры. Например, для насосов, используемых при пожаротушении, учитываются состояния их рабочего материала – пена, вода, газ – и возможная высота струи, необходимая для эффективного пожаротушения. В нефтяной промышленности берутся во внимание вязкость материала, загазованность среды и т.п.

Принцип работы насоса

Крыльчатые насосы являются разновидностью поршневых насосов. Насосы этого типа были изобретены в середине 19 века.
Насосы являются двухходовыми, то есть подают воду без холостого хода.
Применяются, в основном, в качестве ручных насосов для подачи топлива, масел и воды из скважин и колодцев.

Конструкция:
Внутри чугунного корпуса размещены рабочие органы насоса: крыльчатка, совершающая возвратно-поступательные движения и две пары клапанов (впускные и выпускные). При движении крыльчатки происходит перемещение перекачиваемой жидкости из всасывающей полости в нагнетательную. Система клапанов препятствует перетоку жидкости в обратном направлении

Насосы этого типа имеют в своей конструкции сильфон (“гармошку”), сжимая который производят перекачку жидкости. Конструкция насоса очень простая и состоит всего из нескольких деталей.
Обычно, такие насосы изготавливают из пластика (полиэтилена или полипропилена).
Основное применение – выкачивание химически активных жидкостей из бочек, канистр, бутылей и т.п.

Низкая цена насоса позволяет использовать его в качестве одноразового насоса для перекачивания едких и опасных жидкостей с последующей утилизацией этого насоса.

Пластинчато-роторные (или шиберные) насосы представляют собой самовсасывающие насосы объемного типа. Предназначены для перекачивания жидкостей. обладающих смазывающей способностью (масла. дизельное топливо и т.п.). Насосы могут всасывать жидкость “на сухую”, т.е. не требуют предварительного заполнени корпуса рабочей жидкостью.

Принцип работы: Рабочий орган насоса выполнен в виде эксцентрично расположенного ротора, имеющего продольные радиальные пазы, в которых скользят плоские пластины (шиберы), прижимаемые к статору центробежной силой.
Так как ротор расположен эксцентрично, то при его вращении пластины, находясь непрерывно в соприкосновении со стенкой корпуса, то входят в ротор, то выдвигаются из него.
Во время работы насоса на всасывающей стороне образуется разрежение и перекачиваемая масса заполняет пространство между пластинами и далее вытесняется в нагнетательный патрубок.

Шестеренные насосы с наружным зацеплением шестерен предназначены для перекачивания вязких жидкостей, обладающих смазывающей способность.
Насосы обладают самовсасыванием (обычно, не более 4-5 метров).

Принцип действия:
Ведущая шестерня находится в постоянном зацеплении с ведомой и приводит её во вращательное движение. При вращении шестерён насоса в противоположные стороны в полости всасывания зубья, выходя из зацепления, образуют разрежение (вакуум). За счёт этого в полость всасывания поступает жидкость, которая, заполняя впадины между зубьями обеих шестерён, перемещается зубьями вдоль цилиндрических стенок в корпусе и переносится из полости всасывания в полость нагнетания, где зубья шестерён, входя в зацепление, выталкивают жидкость из впадин в нагнетательный трубопровод. При этом между зубьями образуется плотный контакт, вследствие чего обратный перенос жидкости из полости нагнетания в полость всасывания невозможен.

Насосы аналогичны по принципу работы обычному шестеренному насосу, но имеют более компактные размеры. Из минусов можно назвать сложность изготовления.

Принцип действия:
Ведущая шестерня приводится в действие валом электродвигателя. Посредством захвата зубьями ведущей шестерни, внешнее зубчатое колесо также вращается.
При вращении проемы между зубьями освобождаются, объем увеличивается и создается разряжение на входе, обеспечивая всасывание жидкости.
Среда перемещается в межзубьевых пространствах на сторону нагнетания. Серп, в этом случае, служит в качестве уплотнителя между отделениями засасывания и нагнетания.
При внедрении зуба в межзубное пространство объем уменьшается и среде вытесняется к выходу из насоса.

Название этого насоса происходит от формы рабочего органа – диска, выгнутого по синусоиде. Отличительной особенностью синусных насосов является возможность бережного перекачивания продуктов содержащих крупные включения без их повреждения.
Например, можно легко перекачивать компот из персиков с включениями их половинок (естественно, что размер перекачиваемых без повреждения частиц зависит от объема рабочей камеры. При выборе насоса нужно обращать на это внимание).

Размер перекачиваемых частиц зависит от объема полости между диском и корпусом насоса.
Насос не имеет клапанов. Конструктивно устроен очень просто, что гарантирует долгую и безотказную работу.

На валу насоса, в рабочей камере, установлен диск, имеющий форму синусоиды. Камера разделена сверху на 2 части шиберами (до середины диска), которые могут свободно перемещаться в перпендикулярной к диску плоскости и герметизировать эту часть камеры не давая жидкости перетекать с входа насоса на выход (см. рисунок).
При вращении диска он создает в рабочей камере волнообразное движение, за счет которого происходит перемещение жидкости из всасывающего патрубка в нагнетательный. За счет того, что камера наполовину разделена шиберами, жидкость выдавливается в нагнетательный патрубок.

Основной рабочей частью эксцентрикового шнекового насоса является винтовая (героторная) пара, которая определяет как принцип работы, так и все базовые характеристики насосного агрегата. Винтовая пара состоит из неподвижной части – статора, и подвижной – ротора.

Статор – это внутренняя n+1-заходная спираль, изготовленная, как правило, из эластомера (резины), нераздельно (либо раздельно) соединенного с металлической обоймой (гильзой).

Ротор – это внешняя n-заходная спираль, которая изготавливается, как правило, из стали с последующим покрытием или без него.

Стоит указать, что наиболее распространены в настоящее время агрегаты с 2-заходными статором и 1-заходным ротором, такая схема является классической практически для всех производителей винтового оборудования.

Важным моментом, является то, что центры вращения спиралей, как статора, так и ротора смещены на величину эксцентриситета, что и позволяет создать пару трения, в которой при вращении ротора внутри статора создаются замкнутые герметичные полости вдоль всей оси вращения. При этом количество таких замкнутых полостей на единицу длины винтовой пары определяет конечное давление агрегата, а объем каждой полости – его производительность.

Винтовые насосы относятся к объемным насосам. Эти типы насосов могут перекачивать высоковязкие жидкости, в том числе с содержанием большого количества абразивных частиц.
Преимущества винтовых насосов:
– самовсасывание (до 7. 9 метров),
– бережное перекачивание жидкости, не разрушающее структуру продукта,
– возможность перекачивания высоковязких жидкостей, в том числе содержащих частицы,
– возможность изготовления корпуса насоса и статора из различных материалов, что позволяет перекачивать агрессивные жидкости.

Насосы этого типа получили большое распространение в пищевой и нефтехимической промышленности.

Насосы этого типа предназначены для перекачивания вязких продуктов с твердыми частицами. Рабочим органом является шланг.
Преимущество: простота конструкции, высокая надежность, самовсасывание.

Принцип работы:
При вращении ротора в глицерине башмак полностью пережимает шланг (рабочий орган насоса), расположенный по окружности внутри корпуса, и выдавливает перекачиваемую жидкость в магистраль. За башмаком шланг восстанавливает свою форму и всасывает жидкость. Абразивные частицы вдавливаются в эластичный внутренний слой шланга, затем выталкиваются в поток, не повреждая шланга.

Вихревые насосы предназначены для перекачивания различных жидкотекучих сред. насосы обладают самовсасыванием (после залива корпуса насоса жидкостью).
Преимущества: простота конструкции, высокий напор, малые размеры.

Принцип действия:
Рабочее колесо вихревого насоса представляет собой плоский диск с короткими радиальными прямолинейными лопатками, расположенными на периферии колеса. В корпусе имеется кольцевая полость. Внутренний уплотняющий выступ, плотно примыкая к наружным торцам и боковым поверхностям лопаток, разделяет всасывающий и напорный патрубки, соединенные с кольцевой полостью.

При вращении колеса жидкость увлекается лопатками и одновременно под воздействием центробежной силы закручивается. Таким образом, в кольцевой полости работающего насоса образуется своеобразное парное кольцевое вихревое движение, почему насос и называется вихревым. Отличительная особенность вихревого насоса заключается в том, что один и тот же объем жидкости, движущейся по винтовой траектории, на участке от входа в кольцевую полость до выхода из нее многократно попадает в межлопастное пространство колеса, где каждый раз получает дополнительное приращение энергии, а следовательно, и напора.

Газлифт (от газ и англ. lift — поднимать), устройство для подъёма капельной жидкости за счёт энергии, содержащейся в смешиваемом с ней сжатом газе. Газлифт применяют главным образом для подъёма нефти из буровых скважин, используя при этом газ, выходящий из нефтеносных пластов. Известны подъёмники, в которых для подачи жидкости, главным образом воды, используют атмосферный воздух. Такие подъёмники называют эрлифтами или мамут-насосами.

В газлифте, или эрлифте, сжатый газ или воздух от компрессора подаётся по трубопроводу, смешивается с жидкостью, образуя газожидкостную или водо-воздушную эмульсию, которая поднимается по трубе. Смешение газа с жидкостью происходит внизу трубы. Действие газлифта основано на уравновешивании столба газожидкостной эмульсии столбом капельной жидкости на основе закона сообщающихся сосудов. Один из них — буровая скважина или резервуар, а другой — труба, в которой находится газожидкостная смесь.

Мембранные насосы относятся к объемным насосам. Существуют одно- и двухмембранные насосы. Двухмембраные, обычно выпускаются с приводом от сжатого воздуха. На нашем рисунке показан именно такой насос.
Насосы отличатся простотой конструкции, обладают самовсасыванием (до 9 метров), могут перекачивать химически агрессивные жидкости и жидкости с большим содержанием частиц.

Принцип работы:
Две мембраны, соединенные валом, перемещаются вперед и назад под воздействием попеременного нагнетания воздуха в камеры позади мембран с использованием автоматического воздушного клапана.

Всасывание: Первая мембрана создает разрежение, когда она движется от стенки корпуса.
Нагнетание: Вторая мембрана одновременно передает давление воздуха на жидкость, находящуюся в корпусе, проталкивая ее по направлению к выпускному отверстию. Во время каждого цикла давление воздуха на заднюю стенку выпускающей мембраны равно давлению, напору со стороны жидкости. Поэтому мембранные насосы могут работать и при закрытом выпускном клапане без ущерба для срока службы мембраны

Шнековые насосы часто путают с винтовыми. Но это совершенно разные насосы, как можно увидеть в нашем описании. Рабочим органом является шнек.
Насосы этого типа могут перекачивать жидкости средней вязкости (до 800 сСт), обладают хорошей всасывающей способностью (до 9 метров), могут перекачивать жидкости с крупными частицами (размер определяется шагом шнека).
Применяются для перекачивания нефтешламов, мазутов, солярки и т.п.

Внимание! Насосы НЕСАМОВСАСЫВАЮЩИЕ. Для работы в режиме всасывания требуется заливка корпуса насоса и всего всасывающего шланга)

Центробежные насосы являются самыми распространенными насосами. Название происходит от принципа действия: насос работает за счет центробежной силы.
Насос состоит из корпуса (улиитки) и расположенного внутри рабочего колеса с радиальными изогнутыми лопастями. Жидкость попадает в центр колеса и под действием центробежной силы отбрасывается к его перифирии а затем выбрасывается через напорный патрубок.

Насосы используются для перекачивания жидких сред. Существуют модели для химически активный жидкостей, песка и шлама. Отличаются материалами корпуса: для химических жидкостей используют различные марки нержавеющих сталей и пластика, для шламов – износостойкие чугуны или насосы с покрытием из резины.
Массовое использование центробежных насосов обусловлено простотой конструкции и низкой себестоимостью изготовления.

Многосекционные насосы – это насосы с несколькоми рабочими колесами, расположенными последовательно. Такая компоновка нужна тогда, когда необходимо большое давление на выходе.

Дело в том, что обычное центробежное колесо выдает максимальное давление 2-3 атм.

По этому, для получения более высоких значение напора, используют несколько последовательно установленных центробежных колес.
(по сути, это несколько последовательно соединенных центробежных насосов).

Такие типы насосов используют в качестве погружных скважинных и в качестве сетевых насосов высокого давления.

Трехвинтовые насосы предназначены для перекачивания жидкостей, обладающих смазывающей способностью, без абразивных механических примесей. Вязкость продукта – до 1500 сСт. Тип насоса объемный.
Принцип работы трехвинтового насоса понятен из рисунка.

Насосы этого типа применяются:
– на судах морского и речного флота, в машинных отделениях,
– в системах гидравлики,
– в технологических линиях подачи топлива и перекачивания нефтепродуктов.

Струйный насос предназначен для перемещения (откачки) жидкостей или газов с помощью сжатого воздуха (или жидкости и пара), подающегося через эжектор. Принцип работы насоса основан на законе Бернули (чем выше скорость течения жидкости в трубе, тем меньше давление этой жидкости). Этим обусловлена форма насоса.

Конструкция насоса чрезвычайно проста и не имеет движущихся деталей.
Насосы этого типа можно использовать в качестве вакуумный насосов или насосов для перекачивания жидкости (в том числе, содержащих включения).
для работы насоса необходим подвод сжатого воздуха или пара.

Струйные насосы, работающие от пара, называют пароструйными насосами, работающие от воды – водоструйными насосами.
Насосы, отсасывающие вещество и создающие разряжение, называются эжекторами. Насосы нагнетающие вещество под давлением – инжекторами.

Этот насос работает без подвода электроэнергии, сжатого воздуха и т.п. Работа насоса этого типа основана на энергии поступающей самотеком воды и гидроудара, возникающего при резком её торможении.

Принцип работы гидротаранного насоса:
По всасывающей наклонной трубе вода разгоняется до некоторой скорости, при которой отбойный подпружиненный клапан (справа), преодолевает усилие пружины и закрывается, перекрывая поток воды. Инерция резко остановленной воды во всасывающей трубе создает гидроудар (т.е. кратковременно резко возрастает давление воды в питающей трубе). Величина этого давления зависит от длины питающей трубы и скорости потока воды.
Возросшее давление воды открывает верхний клапан насоса и часть воды из трубы проходит в воздушный колпак (прямоугольник сверху) и отводящую трубу (слева от колпака). Воздух в колпаке сжимается, накапливая энергию.
Т.к. вода в питающей трубе остановлена, давление в ней падает, что приводит к открытию отбойного клапана и закрытию верхнего клапана. После этого вода из воздушного колпака выталкивается давлением сжатого воздуха в отводящую трубу. Так как отбойный клапан открылся, вода снова разгоняется и цикл работы насоса повторяется.

СТРУЙНЫЕ НАСОСЫ

Насосы, которые работают путем непосредственной передачи энергии от струи рабочего тела перекачиваемой жидкости, называ­ются струйными.

Независимо от конструкции и назначения каждый струйный насос (рис. 2.10) имеет: сопло 1, в котором потенциальная энер­гия рабочего тела преобразуется в кинетическую энергию; прием­ную камеру 2, в которую подсасывается перекачиваемая жидкость; камеру смешения 3, где энергия частиц потока рабочей жидкости передается частицам перекачиваемой жидкости, которая при этом вовлекается в движение; диффузор 4, служащий для преобразова­ния кинетической энергии потока рабочей и перекачиваемой жид­кости в энергию давления.

Таким образом, принцип действия струйного насоса не требует наличия в его конструкции подвижных частей, а, следовательно, и смазки. Большие скорости, как рабочего тела, так и смеси его с перекачиваемой жидкостью, обеспечивают небольшие размеры на­сосов при перемещении больших объемов перекачиваемой жидко­сти или газа.

При соответствующих свойствах рабочего и перекачиваемого тел насосы могут работать в любой среде, например в затопленном помещении. Струйные насосы легко управляются как дистанцион­но, так и автоматически. К недостаткам этих насосов следует от­нести малую экономичность и зависимость от источника, сообщаю­щего энергию рабочему телу.

Процесс обмена энергией между частицами струи рабочего тела и частицами перекачиваемой жидкости, процесс последующего пре­образования кинетической энергии потока образующейся смеси в потенциальную энергию и особенности конструктивного выпол­нения основных частей струйного насоса зависят, прежде всего от агрегатного состояния рабочего и перекачиваемого тел. Поэтому агрегатное состояние этих тел служит первым признаком для клас­сификации струйных насосов на насосы с однородным агрегатным состоянием вещества и насосы с разнородным агрегатным состоя­нием вещества.

Рис. 2.10.Принципиальная схема струйного насоса

Насосы с однородным состоянием вещества делятся на жид-костно-жидкостные и газо-газовые, а насосы с разнородным агре­гатным состоянием тел — на жидкостно-газовые и газожидкост­ные. Обычно эти два признака совмещаются и одновременно уточ­няются (например, водо-водяной струйный насос, паровоздушный струйный насос и т. д.).

Как и для других типов насосов, классификация струйных насо­сов уточняется по назначению, конструктивным признакам и т. п.

В системах жизнеобеспечения распространение получили водо-водяные и пароэжекторные струйные насосы; область применения тех и других вытекает непосредственно из их свойств.

Водо-водяные струйные насосы широко используются в систе­мах теплоснабжения, водопенного пожаротушения и водоосушения. В этом случае особо важными являются такие их свойства, как высокая готовность к действию, способность работать в затоп­ленном помещении, легкость управления, малые габаритные раз­меры и т. д. При этом экономические характеристики насосов не играют особой роли, так как на первый план выступает требование минимальных размеров и массы.

Пароэжекторные струйные насосы получили широкое распрост­ранение в холодильной технике.

Принципиальное отличие струйных насосов от насосов других типов требует еще одной характеристики для оценки их качества, дополняющей рассмотренные выше. Этой особой характеристикой является коэффициент эжекции и, под которым понимается отно­шение

где Мвс — массовое количество перемещаемого или всасываемого тела, кг/с; М — массовый расход рабочего тела, кг/с.

Коэффициент эжекции служит критерием для сравнения каче­ства организации рабочего процесса и конструктивного исполне­ния струйных насосов, работающих в одинаковых условиях.

Процессы в водо-водяных струйных насосах.Основными про­цессами, происходящими в этих насосах являются: истечение ра­бочей воды из сопла; процессы смешения рабочей и перекачивае­мой воды; процесс повышения давления. Рассмотрим содержание этих процессов.

Истечение рабочей воды из сопла. В соплах потенциальная энергия рабочей воды преобразуется в кинетичес­кую энергию струи воды, вытекающей из сопла. Эффективность работы сопла определяет превращения располагаемой энергии пе­ред соплом в кинетическую энергию струи на выходе из сопла.

Процесс смешения рабочей и перекачи­ваемой воды. Процессы, протекающие в камере смешения водо-водяного струйного насоса, подвергались неоднократным эк­спериментальным исследованиям. Взаимодействие вытекающей из рабочего сопла струи и увлекаемой ею воды осуществляется путем турбулентного обмена импульсами. Вследствие этого скорость и сечение рабочей струи по мере удаления от выходного среза сопла уменьшаются, а объем вовлекаемой в движение воды и ее скорость растут. На некотором расстоянии от выходного среза сопла сме­шение потоков заканчивается, образуется один общий поток с оп­ределенным законом изменения скорости по его сечению. Давле­ние в процессе смешения полагают постоянным на всем участке смешения.

Процесс повышения давления. В расходящейся части диффузора по ходу потока скорость его падает, а давление в потоке растет. Следовательно, кинетическая энергия потока пре­образуется в потенциальную энергию давления жидкости. Процесс преобразования сопровождается потерями, которые определяются по разности напоров потока до и после диффузора, т. е. между сечениями II-II и III-III (рис. 2.10) на основании закона сохра­нения энергии.

Характеристики водо-водяных струйных насосов.В процессе эксплуатации водо-водяных струйных насосов могут изменяться начальное давление рабочей воды, давление нагнетания и давление всасывания, что приводит к изменению коэффициента эжекции и, а следовательно, и подачи струйного насоса.

Оценку влияния изменения перечисленных выше параметров на подачу и напор струйного насоса производят по характеристике Н = f (и), которую получают на основании энергетического ба­ланса (рис. 2.11).

Рис. 2.11. Характеристики водо-во­дяных струйных насосов:

1 — высоконапорных; 2 — при умеренных напорах

Повышение начального давления воды приводит к увеличению напора до некоторого предела, по достижении которого из-за рез­кого увеличения потерь в проточной части напор насоса может снизиться.

КПД водо-водяного струйного насоса определяется отношением полезно затраченной энергии, сооб­щенной перекачиваемой жидкости в насосе, к некоторой части подве­денной энергии и выражается фор­мулой

Данная формула показывает, что КПД насоса зависит от каче­ства работы проточной части насоса и условий его работы.

Рассмотрим условия надежности всасывания водо-водяного струйного насоса. Во время работы водо-водяного струйного насо­са часть энергии потока всасываемой жидкости теряется на пре­одоление сопротивлений во всасывающем трубопроводе и полости всасывания насоса. Эти потери энергии невелики, поэтому при рас­смотрении энергетического баланса их не учитывают. Однако при анализе надежности условий всасывания водо-водяного струйного насоса, особенно при существенной высоте всасывания, эти незна­чительные потери могут явиться причиной появления кавитации и срыва работы насоса.

Надежность всасывания водо-водяного струйного насоса зави­сит от тех же факторов, что и надежность всасывания других насо­сов.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Сдача сессии и защита диплома – страшная бессонница, которая потом кажется страшным сном. 9093 – | 7337 – или читать все.

Ссылка на основную публикацию